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Abstract

In the specialized field of data analysis, precise feature selection has become paramount, especially given the extensive and in-
tricate datasets available. Many of these datasets house a plethora of features, of which a substantial number may be redundant,
leading to potential inaccuracies and increased computational demands. Although the Rough Set (RS) and Multigranular Rough
Set (MGRS) models have demonstrated efficacy in feature selection, their computational complexities can be limiting. To address
this, we introduce an innovative solution, integrating the MGRS with the Grasshopper Optimization Algorithm (GOA)—a meta-
heuristic technique derived from grasshopper foraging behaviors. To manage large-scale data, we employ the Hadoop framework
for streamlined distributed processing. By distributing the enhanced GOA tasks within Hadoop, we aspire to efficiently process
large-scale datasets. The proposed algorithm’s efficacy is assessed using dedicated datasets, benchmarked via classifiers such as
Random Forest and K-Nearest Neighbor. Preliminary results highlight the superior performance of our approach compared to
prevalent metaheuristic strategies, with the MGRS model enhancing performance notably when employed as an objective function.

Keywords: Multigranular Rough Set (MGRS), Grasshopper Optimization Algorithm (GOA), Hadoop framework, Large-scale
lung cancer datasets, Feature selection, Lung cancer research

1. Introduction

In contemporary data-driven research, the imperative of dis-
cerning the most pertinent features within a dataset is under-
scored, given its pivotal role in a plethora of disciplines such as
machine learning, data mining, bioinformatics, signal process-
ing, image analytics, and computer vision [1, 2, 3, 4].

As the dimensionality of data escalates in such disciplines,
presenting scenarios where features surpass sample counts, the
efficacy of feature selection becomes paramount. While rich in-
formation can be harnessed from high-dimensional data, it ush-
ers in computational challenges. Enhanced dimensionality am-
plifies computational intricacies, elongating analysis timelines,
and amplifying resource demands. Additionally, it introduces
the potential peril of the ”curse of dimensionality,” where ex-
cessive dimensions might inadvertently compromise prediction
model accuracies due to overfitting [5, 6].

Intricacies in the feature selection process arise from the
potential interplay of features. For instance, features deemed
inconsequential in isolation may bolster classification precision
when synergized with complementary counterparts. Inversely,
certain standalone robust features could exhibit redundancy in
combination with others [7, 8].

Historically, feature selection strategies have been dichotomized
as either filter or wrapper methodologies [9]. Wrapper strate-
gies embed a learning algorithm within the feature assessment
paradigm, whereas filter strategies decouple the two, evaluating
features’ classification prowess autonomously. Despite their
computational demands, wrapper strategies often outperform,

attributing to their consideration of algorithmic interactions. In
contrast, filter methods, while resource-efficient, may falter due
to their isolation from the learning algorithm [9].

The Rough Set (RS) theory, revered for its prowess in han-
dling data uncertainties, has been instrumental in feature selec-
tion, data mining, and pattern recognition [10]. Notwithstand-
ing its merits, conventional RS grapples with computational
overheads and real-data challenges.

To ameliorate such shortcomings, advanced models like the
multigranular rough set (MGRS) have been proposed [11]. MGRS,
epitomizing a refinement over its RS predecessor, offers aug-
mented flexibility and computational efficiency, rendering it apt
for today’s expansive datasets.

Swarm intelligence approaches, especially metaheuristics
like the grasshopper optimization algorithm (GOA), have emerged
as potent enhancers for feature selection [12, 13]. Deriving cues
from nature, these algorithms have exhibited prowess in deci-
phering intricate optimization conundrums. GOA, in particular,
stands out for its adeptness in leveraging the Hadoop ecosys-
tem, countering conventional MGRS constraints and fortifying
computational alacrity [14].

2. Related Work

This manuscript offers an extensive critique of data analysis
approaches, illuminating methodologies from multiple dimen-
sions, encompassing dataset intricacies, employed techniques,
and evaluative metrics. Various modalities have been employed
to decipher complex datasets, including Decision Trees (DTs),
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Clustering, Probabilistic paradigms, Region-Based tactics, and
both linear and non-linear methods [15]. Additionally, machine
learning paradigms have also been employed for such analyses
[16]. The current discourse also uncovers investigations lever-
aging Deep Learning models for classificatory and predictive
endeavors.

[17], in their seminal work, proposed a detection modal-
ity anchored in a Computer-Aided Diagnostic System (CADS).
Their method ensured meticulous examination of dataset pat-
terns along multiple axes, segmenting the detection process into
three distinct phases, each emphasizing feature map extraction
from diverse orientations. Aligning with this, [15] ventured
into data classification by employing image segmentation tech-
niques using thresholding tactics and harnessing deep learning
for feature extraction. Their employment of the Multi-Layer
Perceptron (MLP) classifier yielded a commendable classifica-
tion success rate of 98.31%.

Further, [18] steered classification tasks relying on image
processing techniques, inclusive of morphological and filtering
methods. In a complementary vein, [19] demonstrated a classi-
ficatory schema utilizing a deep Convolutional Neural Network
(CNN) for image datasets, realizing a 71% success quotient.
Contrarily, [20] anchored on deep learning frameworks to clas-
sify complex data patterns, with the CNN architecture achiev-
ing an 84.15% accuracy rate.

In their investigation, [21] harnessed a multi-view convolu-
tional neural network (MV-CNN) to classify patterns in datasets
using advanced image processing techniques. Concurrently,
[22] adopted a dual-pronged detection strategy for classifica-
tion tasks, achieving an accuracy of 90%. An innovative al-
gorithm, rooted in CNN, was employed to stage classification
categories using fluorodeoxyglucose positron emission tomog-
raphy (FDG-PET)/CT imagery, achieving a 68% accuracy rate
[23].

The domain of data classification has witnessed a myriad
of investigative angles. One such research trajectory evaluated
the efficacy of low-dose imaging techniques for complex data
pattern detection [24]. Another discerning study embarked on a
computational histomorphometric classificatory scheme to pre-
dict patterns of recurrence in early-stage datasets, achieving an
81% accuracy rate [25]. Furthermore, semi-automated systems
were harnessed to analyze volume and dimension attributes in
image-based datasets [26], and another inquiry delved into the
ramifications of integrating structural dimensions into backprop-
agation Artificial Neural Networks (ANN) [27].

3. Preliminaries

3.1. Rough Set Theory

Rough set theory, proposed by Zdzislaw Pawlak in the 1980s,
is a mathematical approach that deals with the vagueness and
uncertainty inherent in many types of information systems. It
has been widely applied in various fields, including data analy-
sis, decision-making, and machine learning.

An information system S can be represented as S = (U, A),
where U is a non-empty finite set of objects, and A is a non-

empty finite set of attributes. For any subset B ⊆ A, an indis-
cernibility relation IND(B) is defined as follows:

IND(B) = {(x, y) ∈ U × U |∀a ∈ B, a(x) = a(y)} (1)

This means that for any two objects x and y in U, if they
share the same values for all attributes in B, then they are indis-
cernible in terms of B.

In rough set theory, any subset X of U can be approximated
using lower and upper approximations, based on the indiscerni-
bility relation.

The lower approximation of X with respect to B, denoted
B∗(X), is the set of all objects in U that can be certainly classi-
fied as belonging to X based on the attributes in B:

B∗(X) = {x ∈ U |[x]B ⊆ X} (2)

The upper approximation of X with respect to B, denoted
B∗(X), is the set of all objects in U that can possibly belong to
X based on the attributes in B:

B∗(X) = {x ∈ U |[x]B ∩ X , ∅} (3)

The boundary region of X with respect to B, denoted BNB(X),
is the set of all objects that cannot be certainly classified as ei-
ther belonging or not belonging to X based on B:

BNB(X) = B∗(X) \ B∗(X) (4)

Rough set theory provides a formal framework for dealing
with the inherent uncertainty and vagueness in information sys-
tems. It is based on the principle of indiscernibility: objects that
cannot be distinguished from each other based on the available
attributes are considered equivalent.

3.2. Multi-Granular Rough Sets (MGRS)
The Multi-Granular Rough Set (MGRS) model is an ex-

tension of the classical RST, which allows different levels of
granulation. This concept is valuable in many contexts where
information can be granulated at different levels, and different
granular levels may provide varying degrees of knowledge or
insights.

Consider an information system IS = (U,Q) where U is
a non-empty finite set of objects and Q is a non-empty finite
set of attributes. For x, y ∈ U and P ⊆ Q, if for any a ∈ P,
a(x) = a(y), then we denote this by x[y]P.

A multi-granulation rough set model is defined on the ba-
sis of several binary relations. Suppose U is a universe and
R = {R1,R2, . . . ,Rm} is a set of equivalence relations on U.
Each equivalence relation Ri induces a partition of U into some
granules. We define the following two types of approximations
based on R:

1. Consistent Multi-granulation Rough Set Model: The
lower and upper approximation of a set X in the consistent
MGRS model are respectively defined as:

R(X) =
m⋂

i=1

Ri[X], (5)
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R(X) =
m⋃

i=1

Ri[X]. (6)

2. Tolerant Multi-granulation Rough Set Model: The
lower and upper approximation of a set X in the tolerant MGRS
model are respectively defined as:

RT (X) =
m⋃

i=1

Ri[X], (7)

RT (X) =
m⋂

i=1

Ri[X]. (8)

In both models, the boundary region of a set X is defined as
BNR(X) = R(X) − R(X).

MGRS provides a more flexible and adaptable approach in
situations where knowledge can be understood and modeled
at different granular levels. It has found applications in many
fields including data mining, machine learning, and decision-
making processes.

3.3. Grasshopper optimization algorithm

The Grasshopper Optimization Algorithm (GOA) models
the inherent collective behaviour of grasshoppers within their
ecological milieu. This algorithm’s mathematical constructs
are articulated through the subsequent formulas and equations
[40, 41]. In the GOA framework, the spatial location of each
grasshopper within the swarm signifies a feasible solution to a
prescribed optimization challenge. The locus of the i-th grasshop-
per is symbolized as Xi and is formulated as shown in equation
3.1.

Xi = S i +Gi + Ai (9)

In this equation, S i signifies the social interaction, Gi rep-
resents the gravitational pull on the i-th grasshopper, and Ai

characterizes the wind advection.
The mathematical model embodies three primary constituents:

social interaction, gravitational pull, and wind advection, mir-
roring the movements of grasshoppers in their environment.
The dominant component emanating from the grasshoppers them-
selves is social interaction, depicted in equation 3.2.

S i =

N∑
j=1
j,i

s(di j)d̂i j. (10)

Here, di j denotes the distance between the i-th and j-th grasshop-
per, defined as di j = |x j − xi|. The strength of social forces
is characterized by the function s as shown in equation 3.3.
The vector d̂i j =

x j−xi

di j
is a unit vector pointing from the i-th

grasshopper towards the j-th grasshopper.
The function s, which outlines the social forces, is formu-

lated as follows:

s(r) = f e
−r
l − e−r. (11)

5 10 15

-0.08

-0.04

-0.02

(2.079,0)

s(
d)

Distance (d)

Figure 1: The value of s(d) when l = 1.15 and f = 0.5

In this equation, f symbolizes the intensity of attraction,
while l signifies the attractive length scale. The role of func-
tion s in modulating the social interaction of grasshoppers is
depicted in Fig. 1.

Analysing Fig. 1, repulsion forces are prevalent within the
interval of [0, 2.079]. The ”comfort area” is the zone where
neither attraction nor repulsion forces exist, which is when the
distance equals 2.079. The force of attraction intensifies from
a distance of 2.079 units to approximately 4, then it gradually
diminishes. Altering the parameters l and f in equation 3.3
results in different social behaviours in artificial grasshoppers,
as observed in Fig. 2. Despite the merits of the function s, it
falls short when dealing with long distances between grasshop-
pers as it can’t exert strong forces. A resolution to this predica-
ment is to map or normalize the distance between grasshoppers
within the range [1, 4].

The gravitational component in equation 3.1, Gi, is com-
puted as:

Gi = −gêg (12)

Here, g denotes the gravitational constant, and êg represents
a unity vector oriented towards the centre of the earth.

The wind advection component in equation 3.1, Ai, is cal-
culated as follows:

Ai = uêw (13)

In this equation, u signifies a constant drift and êw denotes
a unity vector aligned in the wind’s direction.

Consequently, equation 3.1 with all its components can be
expressed as:
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Figure 2: The s(d) value with varying l and f .

Xi =

N∑
j=1
j,i

s
(∣∣x j − xi

∣∣) x j − xi

di j
− gêg + uêw (14)

In order to efficiently address optimization issues, a stochas-
tic algorithm needs to perform exploration and exploitation ef-
fectively to ascertain an accurate approximation of the global
optimum. The preceding mathematical model should be con-
figured with specific parameters to display exploration and ex-
ploitation at different stages of optimization. The suggested
mathematical model is as follows:

Xd
i = c

Ü
N∑

j=1
j,i

c
ubd − lbd

2
s
(∣∣∣xd

j − xd
i

∣∣∣) x j − xi

di j

ê
+ T̂d (15)

In this model, ubd and lbd represent the upper and lower
bounds in the d-th dimension, respectively, T̂d represents the
value of the d-th dimension in the target, and c is a decreas-
ing coefficient to shrink the comfort, repulsion, and attraction
zones. Here, we assume the wind direction (the A component)
always points towards a target (T̂d), and the gravity (G compo-
nent) is not considered.

The parameter c plays a dual role in reducing the repul-
sion/attraction forces between grasshoppers proportional to the
iteration count, and in reducing the search coverage around the
target as the iteration counter increases.

The parameter c is updated according to the following equa-
tion to decrease exploration and increase exploitation in relation
to the number of iterations:

c = cmax − l
cmax − cmin

L
(16)

Here, cmax and cmin denote the maximum and minimum
values respectively, l indicates the current iteration, and L rep-
resents the maximum number of iterations. In our study, we use
the values 1 and 0.00001 for cmax and cmin, respectively.

4. The improved grasshopper algorithm

In the subsequent section, advancements in the Grasshopper
Algorithm (GA) are delineated, wherein it undergoes a transfor-
mation into a binary algorithm, ideally tailored for extracting
salient features from high-dimensional datasets. The evolved
form, termed as the Improved Grasshopper Algorithm (IGA),
incorporates the traditional multi-granular rough set (MGRS)
within its objective function for solution assessment. However,
it is noteworthy that MGRS encounters certain constraints when
deployed for real-world applications. Addressing this, a third
notable contribution of this paper introduces a refined multi-
granular variant of MGRS, showcasing enhanced compatibility
with real-world scenarios.

The initiation of IGA is characterized by the creation of a
random population, analogous to its metaheuristic counterparts,
symbolizing a gamut of solutions. Each solution undergoes a
transformation into a Boolean vector, a pivotal step for fea-
ture extraction endeavors. Within this vector, entities marked
by ‘1’ signify pertinent features, whereas those demarcated by
‘0’ point to non-essential features recommended for omission.
Following this, the objective function’s computation evaluates
the merit of the selected features. For the purposes of this re-
search, the objective function amalgamates two components:
(i) the MGRS, and (ii) the proportion of selected features. In
the ensuing phase, IGA is employed to pinpoint the solution
boasting the apex value of the objective function. Thereafter,
the solution ensemble is rejuvenated, harnessing the operations
of the traditional GA algorithm, as elucidated in Section 2.3.
The aforementioned procedures are reiterated until predefined
termination criteria are satisfied. A comprehensive elucidation
of the proposed algorithmic steps is provided in the ensuing
sections.

4.1. Initial population

The generation of a random mother plant population of size
N is the first step in the proposed algorithm (akin to any swarm
algorithm); thereafter, the conversion of each mother plant (so-
lution) si at the current iteration t to a Boolean vector is given
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as:

st
i, j =

ß
1 if xt

i, j > θ

0 otherwise
(17)

where θ is a random value that signifies the threshold value,
and it falls within the interval [0, 1]. Equation (18) is utilized
to pinpoint the features that must be chosen (corresponding to
1’s) and those that must be removed (corresponding to 0’s).

4.2. Objective function

To identify which subset of features (solution) is useful, the
objective function is calculated for it, where the degree of de-
pendency D defined in Eq. (7) is used. Since the D assesses
only the quality of features, we add another term that represents
the number of chosen features; therefore, the objective function
is defined as follows.

f t
i = D

(
st

i

)
+ λ

Ç
ct

i

n

å
(18)

where λ represents the parameter that maintains a balance be-
tween the size of the chosen features and their quality [37]. ct

i
and n represent the number of chosen features using the ith solu-
tion and the total number of features in the dataset, respectively.

The optimal mother plant is selected based on the apex value
of the objective function. Subsequently, for each mother plant
si, a corresponding daughter plant si, j is generated as per Eq.
(11), followed by the computation of the objective function fi, j
for each daughter plant. Amongst these, the most prominent
daughter plant is designated as s∗i, j. Should the condition de-
tailed in Eq. (12) prevail, a global search is pursued; in its
absence, a local search is initiated, utilizing the function f ∗i, j as
delineated in Eq. (13).

Elaborating further on the local search, as previously artic-
ulated, it transpires on two distinct scales: random expansive
strides and random diminutive strides. Within the ambit of an
expansive stride, each si, j is juxtaposed against s∗i, j, aiming to
discern the one demonstrating superior prowess, as gauged by
the objective function value. Analogous procedures are adopted
for the local search pertaining to diminutive strides.

Progressing to the subsequent phase, mother plants are syn-
thesized from the daughter plants, employing a fusion of elite
and roulette methods as specified in Eqs. (15)–(17), priming
them for the forthcoming iteration. The presence of a stall
condition is subsequently scrutinized; contingent upon its af-
firmation, si, j is selected, else s∗i, j. These procedures are cycli-
cally executed until the cessation criteria materialize, which
may manifest as s∗i, j attaining its zenith, denoted as stmax

i, j , or the
culmination of the stipulated iteration count. A meticulous rep-
resentation of the proposed IGAMGRS is encapsulated in Al-
gorithm 1.

Algorithm 1 Improved Grasshopper Algorithm based on Multi-
Granular Rough Set (IGAMRS)
Result: The best solution xmbest that represents the optimal sub-

set of features.
1 Input: The dataset with number of features E.

Initialize: Define the maximum number of iterations tmax, the
size of population Npop, the maximum stall stallmax, and tol.
Procedure:
Initialize the best function f itbest Build a random population
of mother grasshoppers, xm with size Npop stallcount = 0, t = 1
while termination condition not satisfied do

2 for k = 1 to Npop do
3 Generate daughter grasshopper xdk(t) using Eq. (11)
4 end
5 Compute the f (xd(t)) for each xdk using Eq. (19) Deter-

mine the best daughter xdbest(t) as xdbest(t) = argminx =

xdk f (x) if Condition in Eq. (12) is not true and t > 1 then
6 Construct the xperk for each xd using the local search

with the large steps as in Eq. (13) Compute the ob-
jective function for xperk Update the best daughter
xdbest(t) by comparing f (xdbest(t)) Construct the xperk
for each xdk(t) using the local search with the small
steps using Eq. (14) Compute the objective function
for xperk Update the best daughter xdbest(t) according
to the local search with the small steps

7 end
8 Generate mother plants from the daughter plants using Eqs.

(15)-(17) if
∣∣∣ f (xdbest(t))− f (xdbest(t−1))

f (xdbest(t−1))

∣∣∣ ≥ tol then
9 stallcount = 0

10 end
11 else
12 stallcount = stallcount + 1
13 end
14 end

4.3. Distributed Computation of IGAMRS using Hadoop MapRe-
duce

The Hadoop MapReduce paradigm can be used to distribute
the computations involved in the Improved Grasshopper Algo-
rithm based on Multi-Granular Rough Set (IGAMRS), thereby
enhancing the efficiency of the algorithm when dealing with
large datasets.

The MapReduce paradigm comprises two main stages: the
Map stage and the Reduce stage. In the context of the IGAMRS
algorithm, these stages can be defined in the following subsec-
tion. The description of the distributed version is shown in Fig.
3.

4.3.1. Map Algorithm
In the Map stage, the population of mother grasshoppers,

denoted as xm, is divided into subsets. Each Map task works
on one of these subsets. Each Map task then proceeds with the
IGAMRS computation for its respective subset of xm, involving
the generation of daughter grasshoppers xdk(t), determination of
the best daughter xdbest(t), and generation of mother plants. The
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output of each Map task is a key-value pair, where the key rep-
resents a unique identifier of the task, and the value represents
the best daughter grasshopper xdbest(t) and its corresponding ob-
jective function value. The map function pseudocode is given
in Algorithm 2.

Algorithm 2 Map Function for Distributed IGAMRS
Result: Key-value pairs of the best local solutions.

15 Input: The population subsets of mother grasshoppers xm.
Procedure:
foreach subset in xm do

16 Initialize the best function f itbest Initialize the popula-
tion of mother grasshoppers xm for the subset Initialize
stallcount = 0, t = 1 while termination condition not sat-
isfied do

17 for k = 1 to Npop do
18 Generate daughter grasshopper xdk(t) using Eq.

(11)
19 end
20 Compute the f (xd(t)) for each xdk using Eq. (19)

Determine the best daughter xdbest(t) as xdbest(t) =
argminx = xdk f (x) Generate mother plants from the
daughter plants using Eqs. (15)-(17)

21 end
22 Emit (subset identifier, xdbest(t))
23 end

4.3.2. Reduce Algorithm
In the Reduce stage, all key-value pairs from the Map tasks

are aggregated. The Reduce task identifies the global best daugh-
ter grasshopper xdbest(t) from the collected values. This involves
a comparison of the objective function values of the best daugh-
ter grasshoppers obtained from all Map tasks. The grasshopper
with the lowest objective function value is then selected as the
global best.

Using this MapReduce implementation of the IGAMRS al-
gorithm, the time complexity can be significantly reduced, mak-
ing the algorithm more suitable for applications involving large-
scale feature selection problems. The reduce function pseu-
docode is given in Algorithm 3.

Algorithm 3 Reduce Function for Distributed IGAMRS
Result: The global best solution.

24 Input: Key-value pairs from Map function.
Procedure:
Initialize the global best solution xgbest foreach key-value pair
do

25 Extract the best local solution xdbest(t) if f (xdbest(t)) is bet-
ter than f (xgbest) then

26 xgbest = xdbest(t)
27 end
28 end

Input: Dataset (xm)

Split into subsets

Map Task:
Generate xdk(t),

Compute f (xdk(t)),
Determine xdbest(t)

Output: Key-Value pairs

Input: Key-Value pairs

Reduce Task:
Determine global xgbest

Output: Global Best Solution

Figure 3: IGAMGRS in its distributed form using MapReduce.

5. Experimental work

The proposed IGAMGRS’s performance was rigorously eval-
uated via a series of experimental tests. Initially, a diversified
array of datasets from the UCI machine learning repository,
each manifesting distinct attributes, were employed. The pri-
mary intent of such an examination was to identify a concise
feature subset that preserves the dataset’s intrinsic classifica-
tory essence across generic data instances. As a secondary val-
idation, a collection of lung cancer datasets served to ascertain
the applicability and robustness of the IGAMGRS within the
biomedical domain.

Throughout the experimental framework, classification effi-
cacy was gauged using two renowned classifiers: Random For-
est (RF) and K-Nearest Neighbor (KNN). These benchmarks
were reached by executing diverse algorithms 50 times over the
designated datasets and subsequently deriving the average ac-
curacy. The hyperparameters for KNN, as well as the forest size
for the RF classifier, were meticulously determined through it-
erative experimentation. Such iterations culminated in optimal
configurations, settling on K = 6 for the KNN classifier and
an ensemble size of 95 trees for the RF classifier. All compu-
tational experiments were orchestrated using Python, executed
on a 64-bit Windows 11 operating system infrastructure.
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Table 1: Description of datasets used in experiment I.

# Dataset Samples Features
1 Zoo 101 17
2 BreastCW 699 10
3 Lung Cancer 32 56
4 Heart 270 13
5 Congress 435 16
6 Ionosphere 351 34
7 WaveformEW 5000 40
8 Exactly 1000 13
9 Exactly2 1000 13

10 M-of-n 1000 12
11 PenglungEW 73 325
12 Hayesroth 160 5
13 Madelon 2600 500
14 Isolate5 1559 617

5.1. Experiment I: Comparison using general benchmark dataset

An exhaustive assessment of the proposed algorithm’s per-
formance was conducted employing a selection of fourteen dis-
tinct datasets sourced from the UCI repository. An elaborate
description of these datasets is tabulated in Table 1. To prime
the datasets for feature extraction by the proposed algorithm,
a discretization step was deemed essential. For this procedure,
the Boolean Reasoning method was chosen, primarily due to
its intuitive nature and straightforwardness. Notwithstanding, it
is pertinent to highlight that alternative discretization method-
ologies can be equivalently integrated within this framework,
contingent upon the specific use case. Leveraging the Boolean
Reasoning method facilitates the transmutation of the original
datasets, yielding a format imbued with definitive values.

However, it is crucial to elucidate that the computational
overhead associated with the Boolean Reasoning method is not
incorporated into the cumulative CPU time, denoted in seconds,
attributed to the feature extraction process. This demarcation
stems from the intention to spotlight the intrinsic efficiency of
the algorithm when engaged in the task of feature delineation.

The performance indicators utilized in this study include the
overall accuracy, the Fisher score (F-score), the proportion of
selected features, along with the average, standard deviation,
the best and the worst of the objective function.

1. The Overall Accuracy is used to evaluate the classifica-
tion model. It is defined by the number of accurate predictions
the algorithm makes. Mathematically, accuracy can be denoted
by Eq. (20).

Accuracy =
T P + T N

T P + T N + FP + FN
(20)

Here, TP, TN, FP, and FN represent true positives, true nega-
tives, false positives, and false negatives, respectively.

2. The Average Fisher Score (F-score) is utilized to assess
the efficacy of the selected features. It is represented by Eq.

(21) [? ? ? ] as:

FS j =

∑c
k=1 NCk(µk j − µ j)2

σ2
j

(21)

In this equation, FS j is the Fisher index of the j-th feature, σ2
j

is the standard deviation, µk j and µ j represent the mean of the
k-th class and the mean of all datasets, respectively, and NCk is
the size of the k-th class.

3. The average ratio of the selected features is another mea-
sure used to estimate the proportion of the selected features to
the total features over M iterations. The metric is expressed in
Eq. (24) as:

S elR =
1
M

M∑
i=1

NiS el

D
(24)

Here, NiS el is the number of features selected in the i-th iteration,
and D is the total number of features in the dataset.

4. The Average of the Objective Function, Averagef, which
is presented in Eq. (25):

Average f =
1
M

M∑
i=1

fi (25)

5. The Standard Deviation, STDf of the objective function
values is a measure of the dispersion from the central point (Av-
eragef) over M iterations. It is computed as in Eq. (26):

S T D f =

Ã
1

M − 1

M∑
i=1

( fi − Average f )2 (26)

The algorithm is deemed stable and robust if the value of STDf
is small; otherwise, if STDf is large, the algorithm results can
be regarded as inconsistent and non-convergent.

The best objective function, fBest, is the minimum objective
function value obtained over M iterations, defined by Eq. (27):

f Best =
M

max
i=1

f ∗i (27)

where f ∗i is the best fitness value achieved in the i-th iteration.
The worst objective function, fWorst, is the maximum ob-

jective function value achieved over M iterations, and is defined
by Eq. (28):

f Worst =
M

min
i=1

f ∗i (28)

where, similar to above, f ∗i is the best objective value obtained
at the i-th run.

In Table ??, we provide a detailed account of the results
pertaining to feature selection and the concomitant computa-
tional times. It is salient to observe that the proffered method,
in a majority of datasets, predominantly identifies the most con-
cise feature subsets while incurring the least computational ex-
penditure. Nevertheless, for the Heart dataset, SSORS discerns
the most minimal feature subsets, while CSRS does the same
for both the Lung Cancer and Ionosphere datasets. When ap-
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Table 3: The results of the standard deviation values of the objective function based on RS.

GARS PSORS ABCRS FARS SSORS CSRS HSRS IGAMGRS
Zoo 0.0541 0.0759 0.0645 0.0438 0.0531 0.0454 0.0334 0.0348
BreastCW 0.0147 0.0158 0.0144 0.0164 0.0072 0.0109 0.0157 0.0115
Lung Cancer 0.193 0.171 0.21 0.183 0.159 0.0103 0.174 0.052
Heart 0.061 0.032 0.045 0.052 0.054 0.059 0.023 0.021
Congress 0.019 0.017 0.007 0.015 0.012 0.014 0.007 0.007
Ionosphere 0.022 0.019 0.017 0.022 0.06 0.059 0.015 0.018
WaveformEW 0.012 0.007 0.009 0.009 0.0131 0.008 0.007 0.005
Exactly 0.024 0.091 0.092 0.087 0.024 0.018 0.071 0.022
Exactly2 0.015 0.013 0.01 0.018 0.015 0.015 0.012 0.01
M-of-n 0.051 0.061 0.032 0.022 0.026 0.016 0.026 0.014
PenglungEW 0.0049 0.0086 0.0059 0.0078 0.0088 0.0045 0.007 0.0041
Hayesroth 0.0193 0.0312 0.0226 0.0431 0.0108 0.0267 0.0498 0.0316
Madelon 0.154 0.1109 0.0533 0.0405 0.1672 0.1581 0.1094 0.0756
Isolet5 0.1329 0.069 0.0701 0.0759 0.0575 0.1234 0.0867 0.0864

praising computational efficiency, SSORS stands out for the
BreastCW dataset, whereas CSRS emerges preeminent for the
WaveformEW and Ionosphere datasets.

For datasets such as Hayesroth and Exactly2, ABCRS emerges
as the pinnacle of time efficiency in earmarking salient fea-
tures. Conversely, GARS and PSORS outshine others in the Ex-
actly and PenglungEW datasets, respectively. The method un-
der discussion manifests marked enhancements in performance
for the following quintet of datasets: Heart, Lung Cancer, Zoo,
Congress, and M-of-n.

When navigating datasets endowed with pronounced dimen-
sionality, like Madelon and Isolet5, the advanced IRRA method
evidences an accelerated efficiency compared to its counter-
parts. That being said, ABCRS and HSRA confer enhanced
SelR for the datasets Madelon and Isolet5, in that order. In
a consistent manner, the IGAMGRS algorithm optimally per-
forms, producing both the premier average and the nadir objec-
tive function values across the entirety of the datasets.

Further, SSORS claims the runner-up position in terms of
the superlative and least objective values. Following the IGAM-
GRS, ABCRS stands next in the hierarchy concerning the mean
objective value. It is pivotal to annotate that GARS, unfortu-
nately, registers as the most underperforming algorithm in this
evaluation.

Furthermore, to assess the robustness of the proposed ap-
proach, we computed the standard deviation of the fitness func-
tion, as depicted in Table 3. It is noteworthy that the proposed
algorithm, IGAMGRS, demonstrates the lowest standard devi-
ation value across all datasets. This observation points towards
its superior stability when compared with the other competing
algorithms. Moreover, the CSRS algorithm exhibits a com-
mendable standard deviation value, outperforming the other al-
gorithms, while the standard deviation values of SSORS and
HSRS are observed to be comparable.

Table 4 provides a depiction of the average classification
accuracy of Random Forest (RF) and K-Nearest Neighbours
(KNN) classifiers based on the selected features using various
algorithms for each dataset. A generalized observation reveals

that IGAMGRS delivers the highest accuracy across all datasets
with both classifiers, followed closely by SSORS. Neverthe-
less, ABCRS maintains a solid third position, succeeded by
CSRS and HSRS that showcase nearly equivalent accuracies.
The conventional GARS algorithm, however, exhibits the least
accuracy. In addition, the accuracy performance of PSORS su-
persedes that of the FARS algorithm.

Further dissecting the performance of the proposed method
in each dataset, it can be noted from Table 4 that the SSORS al-
gorithm delivers superior results for both BreastCW and Congress
datasets. For the Exactly dataset, the highest accuracy is at-
tained by employing ABCRS. On the other hand, IGAMGRS
outperforms other algorithms in the remaining datasets.

6. Conclusions

In this investigation, we introduced a synergistic model that
incorporated six distinct machine learning classifiers, three Con-
volutional Neural Networks (CNN) models, and the minimum-
Redundancy Maximum-Relevance (mRMR) feature selection
technique for data classification tasks. The model was trained
and evaluated on a publicly accessible dataset comprising 100
samples. We utilized a 10-fold cross-validation approach to en-
sure the generalizability of the results.

The research was structured into five experiments. The pri-
mary goal of the first two experiments was to gauge the ef-
fectiveness of the CNNs and machine learning classifiers in
the absence of data augmentation techniques. Given the lim-
ited size of the original dataset, the necessity for augmentation
techniques became apparent. The third and fourth experiments
followed the same protocol as the initial two, but we intro-
duced augmentation techniques to assess their potential impact
on model performance. As a consequence, we achieved a clas-
sification success rate of 98.74%, indicating that augmentation
methods significantly enhanced performance.

The final experiment was designed to further improve the
success rate achieved in the fourth experiment by using a more
efficient subset of features. This experiment differed from its
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Table 4: Comparison of the accuracy values of the proposed algorithm with other existing algorithms based on RS using RF and KNN classifiers.

GARS PSORS ABCRS FARS SSORS CSRS HSRS IGAMGRS
Zoo (RF) 82.79 84.61 88.48 84.06 86.00 86.47 86.67 89.67
Zoo (KNN) 78.79 80.61 84.85 81.88 83.50 84.12 83.88 86.88
BreastCW (RF) 88.07 92.54 96.40 93.26 96.83 95.67 95.92 96.69
BreastCW (KNN) 87.28 91.05 96.49 92.73 95.39 93.42 97.37 97.99
Lung Cancer (RF) 70.33 67.81 76.36 69.00 63.64 76.36 73.00 78.07
Lung Cancer (KNN) 60.00 65.36 69.64 64.60 69.64 70.64 66.00 75.98
Heart (RF) 67.35 64.85 71.64 66.47 81.64 64.18 77.61 84.91
Heart (KNN) 65.06 66.41 70.15 69.41 71.57 70.15 73.13 75.18
Congress (RF) 91.66 91.24 94.48 92.79 96.86 95.17 94.48 96.58
Congress (KNN) 89.66 90.41 91.38 91.38 95.86 93.79 92.79 95.17
Ionosphere (RF) 82.60 83.41 85.10 82.44 86.10 86.20 86.40 87.01
Ionosphere (KNN) 79.85 80.40 84.90 80.80 84.70 85.40 84.00 86.07
WaveformEW (RF) 79.01 78.12 82.90 79.89 83.10 82.40 83.20 85.09
WaveformEW (KNN) 74.82 76.82 80.60 77.90 81.90 80.60 80.20 83.25
Exactly (RF) 81.30 84.93 89.10 83.89 87.00 88.30 85.40 88.17
Exactly (KNN) 78.98 79.50 88.40 80.70 84.70 86.00 84.60 86.40
Exactly 2 (RF) 72.70 72.37 74.50 72.35 77.19 75.80 76.04 77.55
Exactly 2 (KNN) 70.60 71.09 73.80 71.40 74.50 73.20 73.60 75.80
M-of-n (RF) 92.80 93.20 96.50 92.72 96.90 97.10 96.90 98.70
M-of-n (KNN) 91.10 92.39 95.40 91.37 94.80 94.30 95.70 97.09
PenglungEW (RF) 61.64 62.34 67.51 63.49 67.29 65.38 67.20 70.09
PenglungEW (KNN) 59.64 60.14 65.20 60.44 65.30 64.30 66.52 67.90
Hayesroth (RF) 85.61 88.41 96.57 90.26 96.53 95.05 96.92 98.25
Hayesroth (KNN) 83.68 86.78 96.48 87.33 95.61 93.74 96.04 97.37
Madelon (RF) 74.02 76.67 74.02 71.86 77.16 75.06 71.28 79.79
Madelon (KNN) 70.81 74.25 75.06 68.48 76.67 73.04 67.32 78.98
Isolet5 (RF) 80.77 89.33 79.17 83.33 85.43 87.50 84.62 90.59
Isolet5 (KNN) 71.15 86.67 75.00 79.17 71.88 75.00 74.04 88.15

predecessors by focusing on enhancing time and speed effi-
ciency in the classification process. To achieve this, we opted
to reduce the feature dimensionality using the mRMR feature
selection method. This strategy led to a more time-efficient ap-
proach. We discovered that a combination of IGAMGRS, Neu-
ral Network (NN), and the mRMR method yielded the most
promising results, with an accuracy of 99.51%, a sensitivity of
99.32%, and a specificity of 99.71%.
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